Gamma functions

less than 1 minute read

Published:

Recall the factorial function of a non-negative integer \(n\) is given by \(\begin{aligned} n!=n\times (n-1)\times (n-2)\times (n-3)\times \cdots \times 2\times 1 \end{aligned}\) and the binomial coefficients are given by \(\begin{aligned} \begin{pmatrix} n\\ k \end{pmatrix} = \frac{n!}{k!(n-k)!} \end{aligned}\)

\[\begin{aligned} \text{lipschitz cont.}\subseteq\text{absolute cont.}\subseteq \text{uniformly cont.} \subseteq \text{continuous} \end{aligned}\]
Reference

https://en.wikipedia.org/wiki/Absolute_continuity